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An alternative analytical treatment to that of Drazin & Otte is given for the determination of the 
orientation of a cubic crystal from three non-parallel {111 } trace directions on a surface of the crystal. 
The treatment allows considerable simplification in the orientation determination if a fourth {111} 
trace direction is also known. 

Introduction 

The orientation of a cubic crystal may be determined 
from { 111 } traces on a surface of the crystal by graphic 
methods (Barrett, 1952; Mykura,  1958; Drazin & Otte, 
1963), with the aid of charts such as that devised by Tak- 
euchi, Honma  & Ikeda (1959), or with the assistance of 
tables such as those produced by Drazin & Otte (1964). 
Drazin & Otte (1963) have also given a thorough analy- 
tical t reatment  for the determination of crystal orienta- 
tion from three non-parallel {111} traces. The determi- 
nation hinges around the solution o f a  quartic equation 
which was not however given in its explicit form be- 
cause of its awkwardness. 

The purpose of the present paper is to present an 
alternative t reatment  to that of Drazin & Otte for 
the analytical determination of the orientation of  a 
cubic crystal from three non-parallel {111} traces on 
a surface of  the crystal. In the t reatment  given here, 
the orientation determination also depends on the prior 
solution of  a quartic equation which will in this case 
be developed to its complete form and its solutions ex- 
pressed. The more valuable aspect of the t reatment  
however is that,  given a fourth distinct { 111 } trace direc- 
tion, it will permit  the quartic equation to be replaced 
by a linear equation which is of  course readily solved 
and makes the overall orientation determination much 
simpler. 

Preliminary considerations 

In Fig. 1 plane ABC represents the crystal surface on 
which are observed {l l l} traces AB, BC and CA 
making angles c~,/~, and 7 with one another  as indicated. 

and /~  are measurable quantities; 7 is simply 180 ° 
less the sum of c~ and p. It is our intention to work out 
the crystal orientation from these quantities. Imagine, 
in Fig. 1, { I l i }  planes ABP, BCP, and CAP which 
intersect at a point  P outside the crystal and which 
make the traces A B, BC, and CA. A P, BP, and CP 
will be [110] directions and since they lie in pairs in 
{111} planes the angles 0~, 02, and 03 between them 
as shown in Fig. 1 will be 60 or 120 ° but not 90 °. 01, 
Q2, and ~oa are, however, restricted to all being 60 °, or 
one being 60 ° and the other two 120 ° . This is explained 
in Appendix I. If we define the quantities j l ,  j2, and Ja 

to be such that  

Jl = + 1 when et = 60° 
J i = - I  w h e n Q t = 1 2 0  ° f o r i = l ,  2, o r 3  

then it would follow from the possible values of e~, e2, 
and 03 in conjunction that  

jljzjz = + 1 ,  jljz=j3, jzj3=j,, and j~j3=j2. 

The [110] directions AP, BP, and CP in Fig. 1 may 
be taken to be represented by the unit vectors l/½(0,j2, 1) 
l/½(jl,0,j3) and 1'½(1,1,0), as it can be readily checked 
that the angles between these vectors are 01, e2, and 03. 
The outward normals to the planes ABP, BCP, and 
CAP in Fig. 1 are then given respectively by the vectors 

(0,A, 1)A(jl,0,A)=jl(1, 1, - A )  
(j l ,  0,.~)A(1, 1,0) = 7 3 ( -  1,1,.~) 

and 
(1, 1,0)A(0,j2, 1 ) = (1, -- 1,j2) • 

Thus ABP, BCP, and CAP are the crystallographic 
planes (11]2), (Tlj2) and (1Tj2) respectively. 
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Fig. 1. The pyramidal figure ABCP formed by {111 } planes 
ABP, BCP, and CAP through {Il l  } traces AB, BC, and CA 
on crystal surface ABC. AA', BB', and CC" are outward 
normals to crystal surface ABC. 
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The crystallographic plane constituting the crystal 
surface with the {111 } traces may be determined once 
the cosines of the angles al, o'2, and as made by AP,  
BP,  and CP with the normal to the crystal surface 
(see Fig. 1) are found along with the actual values for 
Jl and j2. For if this crystallographic plane is taken to 
be given by the unit vector (131, v2,133) directed towards 
P then 

(V1,132,133). ]/½(O,j2, 1)= I/½(jzV2 +v3)=cos  al 
(VI,12,133). V½(jl, 0,j3) = ]/½(J'lVl +j3v3)  = c O S  0"2 
(131,132,03). ]/½(1, 1,0)= ]/½(Vx +V2)=COS as .  

F rom these equations Vl, v2, and v3 emerge as: 

vl = 1/12(-A cos al +A cos a2 + cos a3) 
132 = ]/½(j2 COS a 1 - J l  cos a2 + cos as) 
vs = I/½(cos al +jl j2 cos o'2-J2 COS 0"3). 

In their turn cos ax, cos a2, and cos as are known 
in terms of the angles 0,0', ~o,¢, V, and ¢,' shown in 
Fig. 1 as follows: 

cos al= ]/{ 1 -  

cos 0"2~--- ¢{ 1 -  

COS as= ]/{ 1 -  

COS 2 0 "-t- COS 2 ~¢ - -  2 cos 0 cos V cos a } 
sin 2 

COS 2 (/7 --1- COS 2 ~1' --  2 cos cp cos V' cos fl[ 
sin 2 fl J 

cos 2 ~0' + cos 2 0' - 2 cos ~0' cos 0' cos ~q 
sin 2 y ]" 

The proof of these relations is given in Appendix II. 
Thus (vl, v2, v3) may be determined if 0, 0', ~0, ¢ ,  9', ~' ,  
Jl, and J2 can first be obtained from the inter-trace 
angles a, fl, and y. 

Once (vl, v2,v3) is found the crystallographic direc- 
tion on the crystal parallel to the trace B C  becomes 
known since it is given by the unit vector 

(131, v2, v3)^(- 1,1,j2) (J2132 -- 133, --J2131 -- 133,131 + 132) m . • 
I(vl, v2,133)^(-- l, 1,j2)l -- 1/{2(1 + V1132 +j2vlv3--j2v2v3)} 

We will take for our frame of reference the right- 
handed rectangular coordinate system O X Y Z  which 
has axis O X  parallel to the trace B C  and axis O Z  
parallel to the outward normal to the crystal surface 
ABC.  Then the crystallographic direction parallel to 
O X  is given by the unit vector 

(j213z-- V3, --j211--133,131 + 132) 
]/[2(1 + 131V2 +j2VlVs--j2v2vs)]" 

That parallel to O Z  is given by the unit vector 

(131,132,133) , 

and that parallel to O Y is given by the unit vector 

Consider now the matrix M whose rows are the above 
unit vectors" 

/j2v2 --  V3 --J2131 -- V3 /)1 "Jr"/)2 ~ 

l Wl Wl W1 ) M = 1 + vlw2 - 1 + 13214'2 - -J2 "-]" 133W2 

W1 W1 W1 

01 132 133 

where 
W 1 = 1/[2( l "-t- UlV 2 "st-AVlV3 --AU2133)] 
W2 :A133 At- 132 --  131 " 

The product of M and any crystallographic direction 
of the crystal expressed as a unit vector will give the 
direction cosines of that crystallographic direction with 
respect to the O X Y Z  coordinate system. M is therefore 
the so-called rotation matrix which will transform di- 
rections in the crystal system to directions in the chosen 
frame of reference O X Y Z .  The orientation of the crys- 
tal is therefore known with M which in turn can be 
found from 0, 0', q~, cp', V, V', Jl and J2 through vl, v2 
and Vs. 

Looking at Fig. 1 again we will see that the location 
selected for P (outside the crystal) is not the only 
possibility. Another possible geometry of {111} planes 
in accord with the disposition of the traces AB,  BC, 
and CA is that where P is located in an analogous po- 
sition on the other side of the crystal surface ABC,  
that is, within the crystal. This geometry would con- 
stitute an orientation which is a mirror image of that 
where P is outside the crystal, the crystal surface A B C  
acting as a mirror. Thus there are to be derived from the 
quantities 0, 0', ~0, ¢ ,  V, ~' ,  Jl and j2, which define the 
correct shape of the pyramidal figure A B C P ,  not one 
but a pair of mirror image orientations, that is a pair 
of orientations with z coordinates of opposite signs, 
and these orientations will be given by the rotation 
matrices 

t 
j2132 -- 133 --j2131 -- 133 131 q- 1 )2  

W 1 W1 W1 

1 

Mj = .1 + v__Aw z -- 1 + v2w2 -.]2 + vsw2 

W1 W1 WI 
j131 jr2 .]03 

where j =  + 1 . 

Determination of 0, 0', 9, 9', V, V', Jl and j2 

The preceding considerations show that if the quanti- 
ties 0, 0', q~, cp', V, Cr',Jl and j2 can be worked out from 
the inter-trace angles 0¢, fl, and ? then the crystal orien- 

(AU2 --  03, --AU1 --  Us, Ol "[- V2) 
(11' V2s U3)A I/[2(1 + 131132 -~-A131133 --A132133)] 

[1 + vx(hv3 + v2 -  vl), - 1 + v2(Av3 + 132-131), --A -[- 133(A133 ~" 132 - -  131)] 
]/[2(1 + 131132 A/-A131133--A132133)] 

A C 29A - 5* 
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tat ion becomes determinable. The determination of 0, 
0', ~o, ~0', ~', ~' ,  j~ and Jz from c~, fl, and ), will now be 
discussed. 

Referring to Fig. 1 and using s tandard tr igonometric 
relationships the equations (1) to (4) below are readily 
obtained:  

B C -  I/3CP 
2 sin ~0 

A C =  1/3CP 
2 sin 0 

CP sin ~o' CP sin (0~ + 9) 
B P -  

sin ~ sin ~o 

CP sin 0' CP sin (02 + 0) 
A P -  

sin 0 sin 0 

Equat ions (1) and (2) give 

BC 
AC 

At the same time 

Hence 

where 

also, 

sin 0 
sin ~o 

BC sin 
AC sin fl " 

sin 0 
sin ~o- k 

sin 
k = sin f l '  

AB e = AP 2 + BP 2 -  2AP . BP cos Q3 

CpE { sin 2 (0, + 0) sinE(0~ + ~0) 
sin 2 0 - -  + - - -s in  z ~0 

.J3 sin (Q2+ 0) sin (01 + tp)] 
sin 0 sin ~0 l 

Cp 2 
- sinE0 {sin 2 (02 + 0) + k 2 sin E (0~ + ~0) 

- j3ks in  (02 + 0) sin (0~ + ~0)}. 

f 
sin (0z + 0) sin (0~ + 9) = ¼ ~ 3 cos 0 cos ~o 

+1/3sinO(JA-c°-sO+jEcos~o)+J1~kn-!-O } 
k 

(14) 

Substituting into equation (9) 

Cp2 { 3 - 2  sinEO+21/3j2 sin Ocos O+3k  2 (1) A B e -  4s in  EO 

- 2  sin z 0+21/3kj~ sin 0 cos ~o-3jak cos Ocos ~0 (2) 
- 1/3j3 sin O(jl cos 0 +jEk cos ~0)-jljEj3 sin z O} 

Cp 2 
(3) - 4 sinZO {3(1 + k 2 ) - 5  sin z 0 

+ 1/3 sin O(j2 cos 0 +ilk cos ~0) - 3jjEk cos 0 cos ~0}. 
(4) (15) 

F rom triangle ABC in Fig. 1 and using equation (2), 

sin 2 e 3 sin 2 ~,. CP 2 
(5) ABE= s]nZ-p " ACE= 4 sin 2 fl sinE-0" (16) 

Substituting into equation (15), 

3 sin E 7 
(6) sin2 ~- = 3(1 + k 2) - 5 sin 2 0 

+ I/3 sin O(j2 cos 0 +jlk cos ~p)-3jljEk cos 0 cos ~o, 

i.e. 

(7) 1/3 sin O(jE COS 0 +j,k COS ~0) 

= 5  sin 2 0 - r + 3 j ~ j E k  cos 0cos  ~o (17) 

where 

(8) ( ) ( sin2 c t - s i n 2  7 ) ( 1 8 )  r = 3 1-1- k E - s i n 2  ~ = 3 1 + 
sin E fl sin 2 fl 

On squaring, equation (17) becomes 

3 sin 20(cos 2 0 + k 2 cos 2 ~0 + 2.jjEk cos 0 cos 9) 
= (5 sin E O -  r) E + 9k E cos 2 0 cos E ~0 

+ 6jjzk(5 sin E 0 - r ) c o s  0 cos ~o 

(9) 

Equations (10) to (14) below are readily obtained by 
tr igonometric expansion and by applying equation (7)" 

sin (Qz+0)=½(1/3 cos 0 + •  sin 0) (10) 

sin 2 ( Q 2 + 0 ) = ¼ ( 3 - 2  sin 2 0+21/3j2 sin 0 cos 0) (11) 

sin (~, + ~0)=½ (I/3 cos ~o + J!  Sk-0 ) (12) 

s in2 (Q1 + ~0) = ¼ (3 
2 sin 2 0 21/3j~ sin 0 cos ~0~ 

k 2 nt- k I (13) 

3 sin 2 0{ 1 - sin 2 0 + kE(1 - sin 2 (o) + 2jljEk cos 0 cos ~0} 
= 2 5  sin 4 0 - 1 0 r  sin 2 0 + r  2 

+ 9kZ(1 - sin 2 0) (1 - sin E ~0) 
+ 6jjEk(5 sin E 0 - r )  cos 0 cos ~o. 

Putting sin ~o=sin O/k and gathering like terms to- 
gether, 

40 sin 4 0 -  2(5r + 6k 2 + 6) sin 2 0 + r 2 + 9k 2 
= 6 j j 2 k ( r - 4  sin e 0) cos 0 cos ~0. (19) 

Squaring again, 

[40 sin 4 0 -  2(5r + 6k 2 + 6) sin 2 0 + r 2 + 9k2] 2 
= 36k2(r 2 -  8r sin 2 0 + 16 sin 4 0) 
x ( 1 - s i n  2 0) (1 - s i n  2 rp). 

Multiplying through by 4 and putt ing sin ~o= sin O/k 
and 
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y = 4 sin 20 (20) 

q = 3k 2 (21) 
we get 

[5y 2 - (5r + 2q + 6)y + 2(r 2 + 3q)] 2 

= 3 ( r 2 - 2 r y + y  2) ( 4 - y )  ( 4 q - 3 y ) .  (22) 

This, on expanding and gathering like terms together, 
gives 

4 y  4 - -  2(4r + q + 3)y 3 + (9r 2 + q2_  r q -  3r + 9q + 9)y 2 
- (5r a - r2q-  3r 2 -  9rq + 6q 2 + 18q)y + (r 2 -  3q) 2 

= 0 ,  (23) 

which for convenience of  further discussion may be 
written as 

y" + 4by 3 + 6ey 2 + 4dy + e = 0 (24) 

where 

b =  --~(4r + q + 3) 
c = ~x(9r 2 + q2_  r q -  3r + 9q + 9) 
d =  - ~-66 (5r a - r2q-  3r 2 -  9rq + 6q z + 18q) 
e = ¼(r 2 -  3q) 2. 

The solution of  the quartic equation (24) is discussed 
in various mathematical  texts, for example Briggs & 
Bryan (1960). The solution may be written as 

y = - ( b + m ) +  l / ( b + m ) 2 - c - n - 2 z }  (25) 

where with 

H =  ~-i~(4bd- e - 3c 2) 

G = ¼(ce + 2 b c d -  d 2 - eb 2 - c a ) 

and 
F=G2 + 4 H  a 

z= (~-__.G_ G) U3_H/(I/F2-G ) u3 if F > 0  

= 2 1 / ( - H )  cos {½ cos - I [ -G /21 / ( -H3) ] }  if F<~0 
m =  + l /(bZ-c + z) 

n = ( b c -  d+ 2bz)/m. 

There are therefore four possible values for y = 4 sin z 0 
which may be obtained from the angles ~, fl, and 7 
between three non-parallel  {l 1 l} traces but  values 
which are imaginary, negative, or greater than 4 are of  
course inadmissible. 

For  each acceptable solution for 7 there may be two 
possible values for 0 and ~p: 

O=sin  -1 (Vy/2) or 1 8 0 ° - s i n  -1 (l/y/2) (26) 

( ]/y sin_ft.] (~Y~nnfl )  
q9 = s in-  1 2 sin ~ ] or 180 ° -  s in-  x . (27) 

[referring to equations (7) and (8)]. 
0 = 1 8 0  ° -  sin -~ (l/y/2) is inadmissible however if 
sin -~ (l/y/2) < 60 ° for then 0 >  120 ° so that  Q z + 0 >  180 °. 

/ 

Similarly ~ = 180 ° -  sin -1 ( 2 sin ~ ! is not  permissible 

ifsin-X (]/Y sin_fl~ 
2 s i n ,  ] < 60°" 

Of  the various combinat ions of the possible values 
of  0, ~0,jl andjz ,  however, only one is correct, the one 
which is consistent with the geometry of  Fig. 1, that  
is, permits the equating of  the r ight-hand sides of  equa- 
tions (9) and (16). The correct combinat ion is therefore 
found on substituting the various possible values of  
0, ~0, j l  and j z  into equation (17) noting that  if 0 > 6 0  ° 
j2 cannot  be - 1  since Q2 in this case cannot  be 120 ° 
and similarly if ~0 > 60 ° j l  can only be + 1. That  set of 
values of  0, (0, j~ and Jz which satisfies equation (17) 
will be the correct set. Knowing jr and jz  and therefore 
J3----Jj2, Q1, Q2, and Q3 may be deduced. 0' and ~0' may 
then be determined from 

0' = 180 ° - 0 2 -  0 (28)  

tp' = 180 ° - e~ - ~p. (29) 

gt and g '  may now be obtained from Fig. 1" 

A P  sin ~u' sin (~u + e3) 
BP sin g sin 

sin g cos ea + cos ~, sin ea 
sin ~u 

_ J, J2 + 1/3 c o t g  (30) 
2 2 

F rom equations (3) and (4) 

A P  sin 0' sin q~ 
BP sin 0 sin tp' " 

This and equat ion (30) gives 

1 ( 2 s i n O ' s i n ~ - j l j 2 )  . (31) 
cot ~u = - ~  sin 0 sin ~0 

Whence the value of  ~ between 0 and 180 ° and ~u'= 
180 ° -  e z - ~  may  be evaluated. 

All the quantities 0, 0', ~0, ~0', ~, ~u', j~ and Jz are 
therefore determinable given the values of  the inter- 
trace angles ~, fl, and ~,. F rom these quantities, as 
discussed above, a pair  of  mirror- image crystal orien- 
tations may  be worked out. Because y = 4  sin 2 0 may  
have as many  as four possible values there are as many  
as four possible sets of  values of 0, 0', ~0, ~0', q/, ~u', Jl 
and Jz. There are thus arising from the consideration 
of  three non-parallel {111 } traces as many  as four pos- 
sible pairs of mirror- image crystal orientations, as has 
been pointed out by Mykura  (1958) and Drazin & 
Otte (1963). 

S o l u t i o n  o f  crys ta l  o r i e n t a t i o n  wi th  f o u r  a v a i l a b l e  
t race  d irec t ions  

Each possible pair  of  mirror- image crystal orientations 
determined from th ree  non-parallel {111} traces 
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will have a particular pair of mirror-image orientations 
of the fourth {111} plane which will produce a fourth 
distinct {111} trace in a particular direction on the 
crystal surface containing the traces. If then a fourth 
non-parallel {111 } trace is also observed, the number 
of possible crystal orientations compatible with all four 
traces is narrowed down to one pair of mirror-image 
orientations (see also Mykura, 1958, and Takeuchi, 
Honma & Ikeda, 1959). This correct pair of orienta- 
tions may be ascertained by the method given below. 

It was shown above that if the directions AP, BP, 
and CP in Fig. 1 are taken to be [0j21 ], [jl0j3], and 
[110] then the planes ABP,  B C P  and C A P  are respec- 
tively (11j2), (T l j2), and (1T j2). (T 1 j2) and (IT j2) always 
account for the two octahedral planes (T11) and (1T1) 
whereas (1 l]z) accounts for one of the other two octa- 
hedral planes which will be either (liT) or (111) de- 

pair of orientations will be that for which the computed 
and observed directions of the fourth trace tally. 

Alternatively, the fourth trace may be substituted 
for say BC to give a new set of inter-trace angles ct, fl* 
and 7,* whereupon another set of possible crystal orien- 
tations may be obtained as already discussed. One pair 
of crystal orientations of this second set will be identi- 
cal (or nearly identical in the practical situation) with 
a pair in the first set arising from the inter-trace angles 
e, fl, and 7. This is then the correct pair of crystal 
orientations applicable to the four observed traces. 

Indeed, the angle ~ being maintained in the second 
set of inter-trace angles, 'y = 4 sin20 ' should be the same 
for both sets of inter-trace angles, as will be clear from 
Fig. 2, which shows the two alternative arrangements 
of the pyramidal figure A B * C P *  formed by the {111} 

pending on whether j2 = 1 or - 1 .  It follows that the P 
fourth {111} plane producing a fourth distinct trace 
direction is representable by (1 l j2). 

The crystallographic direction of the fourth trace if 
seen on the surface of the crystal will therefore, on the 
above basis, be given by the unit vector m 

(vl, v2, v3)^(1,1,j2) (j2vz - v3, - j 2 v l  + v3, vl - v2) 
[(vx, v2, v3)A(1-1,j2)i = V {2(-1----v~v2-j2v,va-j2v2va) } "1 ' ,4 

(32) 

That for the trace BC in Fig. 1 has been shown to be 

_ ( j , v , -  v3, -Avl  - v3 ,  v~ + v2) 
- V{2(1 + vlv2k-j2vlv3-j2v2/)3)} (33) B 

and that for the trace CA is 

(vl, v2, v3)^(1, - 1,j2) _ (j2v2 + v3, - j 2v l  + v3, - vl - v2) 
I(v~,vz, va)A(1, -- 1,A)I -- V'{2(1 + vxvz-AV,Vs +.Av2-~3)} " 

(34) 

The smaller angle r/which the fourth trace makes with 
B C  is obtainable from the dot product of the vectors 
in equations (32) and (33) and works out to be 

[ Iv~-j2v2val ] 

(35) 

Similarly the smaller angle ( made by the fourth trace 
with CA is given by the dot product of the vectors in p, 
equations (32) and (34) and is 

! . . . . . . . . . . . . . . . . . . . . .  ] (=cos- '  
[ I/[1 - 2j2vlv3(1 + v~) - v~v 2 z 2 

- v,v3 + (36) 

/ 

By employing equations (35) and (36) the direction of 
the fourth {111} trace relative to traces B C  and CA 
may be computed for each possible pair of mirror- 
image crystal orientations derived from three {111} 
traces AB, BC, and CA and the only pair of crystal 
orientations that can exist for four traces ascertained 
by comparing the computed directions of the fourth 
trace with its actually observed direction. The correct 

(b) 
Fig. 2. The two imaginable arrangements of the pyramidal 

figure AB*CP* formed by (11 l) planes through {111 } traces 
AB, B'C, and CA relative to the pyramidal figure ABCP 
formed by (ll l) planes through {l l l} traces AB, BC, and 
CA. 
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planes through traces AB, CA, and the fourth trace 
B*C. From these figures the angle 0* between A P *  
and A C  is seen to be either equal to 0 of the pyramidal  
figure A B C P  for the set of traces AB, BC, and CA or 
equal to 180° -0 .  Hence sin 0 * = s i n  0 so that  ' y =  
4 sin 2 0' should be the same for both  sets of three 
traces for the right pair of crystal orientations. It 
would therefore be enough, and more convenient in 
practice, to obtain the values for 'y = 4 sin 2 0' for both  
sets of  three traces and select the value of y common 
to both  as the one from which the correct pair of  
crystal orientations may be determined. This manner  
of consideration gives rise to another  approach for ob- 
taining the correct value of  y = 4  sin 2 0 when four trace 
directions are available without  having to solve a 
quartic equation and then at tempting to pick the cor- 
rect solution f rom as many  as four possibilities. This 
approach is next discussed. 

If  x is taken to be the common value of y contained 
in the set of values o f y  = 4 sin 2 0 and that  o f y  = 4 sinE0 * 
arising respectively f rom the traces AB, BC, and CA 
and the traces AB*,  B ' C ,  and CA in Fig. 2 then on 
referring to equat ion (23) 

x 4 + a3 x3 + a2 X2 + aix + ao = 0 (37) 

x 4 + b3 x3 + b2x 2 + blx  + bo = 0 (38) 
where 

a 3 = - -  ½(4r + q + 3) 
a2 = ¼(9r 2 + q 2  _ r q -  3r + 9q + 9) 
al = - 4X(5r a -  rEq-  3r 2 -  9rq + 6q 2 + 18q) 
ao = ¼(r 2 -  3q) 2 

r =  3 ( 1 +  sin2 c~-sin2 Y) 
sin 2 fl 

3 sin E 

q--  sinEfl " 

b a ,  bE ,  bi, and bo are identical with aa, aE, ai, and ao 
respectively except that  for them 

( sinEs--sin27 * ) 3 sin2 0~ 
r = 3  1+  sinEfl, a n d q -  sinEfl, . 

Equat ion (38) minus equation (37) gives 
(b3-aa)x  a +(bE-aE)x 2 + ( b a - a O x  +(bo-ao)=O (39) 

[bo x equation (37)] - [ao x equation (38)] gives 
(bo - ao)x 4 + (boaa - aoba)x a + (b0aE- aobE)X 2 

+ (boai - aobl)x = O. (40) 

Putting aside the case where x = O  (this corresponds 
to a crystal orientat ion where the crystal surface with 
the traces is a {111 } plane and would be obvious from 
all traces being 60 ° to one another  and in any case 
would not  apply to the present consideration since 
only three trace directions at most  would be present) 
equation (40) is reducible to 

(b0 - a0)x a + (boaa - aoba)x 2 + (boa2 - aobE)X 

+(boa l -aob i )=O.  (41) 

Thus equations (37) and (38) of  the fourth degree in 
x have been replaced by equations (39) and (41) of  the 
third degree in x. In a similar fashion equations (39) 
and (41) may be reduced to two equations of the se- 
cond degree in x: 

CzX 2 + clx + c0 = 0 (42) 

dzx 2 + dlx + do = 0 (43) 
where 

Cz=(bo-ao) ( b E - a E ) - ( b a - a 3 )  (boa3-aob3) 

el = (b0-  a0) (bi - al) - (ba - a3) (b0a2 - aobz) 

eo = (b0 - a0) 2 -  (b3 - a3) (boai - aobl) 

d2 = - ¢o 
di = (boal - aobO (b2 - aE) - (bo-  ao) (boa3 - aob3) 
do = (boai - aobl) (bi - aa) - (bo-  ao) (boaE- aobE) • 

Equat ions (42) and (43) will by the same process yield 
two equations in x of the first degree: 

(CEd~-dECOX +CEdo-dzco=O (44) 

(CodE-docE)x + codi-docl=O . (45) 

Whence 

or equivalently 

Codz-doC2 
x =  cadi-dECl (46) 

c~&-dlco 
x= CodE-doCE" (47) 

If  the {111 } trace directions are precisely known then 
equations (46) and (47) will be perfectly identical. If  
not, either because of  inherent errors or errors of  meas- 
urement,  the two values of x will not be the same. The 
difference will clearly be small if small errors are in- 
volved and generally large if large errors are involved. 
x = 4 sin 2 0 computed from either equations (46) or (47) 
may now be used to determine in the manner  already 
discussed the correct set of  values of  O, 0', (o, rp', V, ~ ' ,  
J1 and j2 and the only pair of crystal orientations pos- 
sible for four trace directions with an uncertainty (if 
there is a error in the measured trace dispositions) the 
qualitative extent of which is usually indicated by the 
disparity in the values of  x given by equations (46) and 
(47). 

Concluding remarks 

A series of equations and expressions have therefore 
been established relating the orientation of  a crystal 
to the angles between {111} traces on a surface of the 
crystal enabling the possibilities of  crystal orientat ion 
to be determined analytically once the angles between 
the traces have been measured. The determinat ion is 
based on the prior evaluation of the inclinations of the 
(110)  edges of  the pyramidal  figure formed by the 
{111} planes producing the traces. These inclinations 
are obtained through the solution of a quartic equation 
(23) or f rom relations essentially expressing the incli- 



182 C U B I C  C R Y S T A L  O R I E N T A T I O N  F R O M  {111} S U R F A C E  T R A C E S  

nations explicitly in terms of  the angles between the 
traces [equations (46) and (47)]. When one or more of  
four  non-parallel traces are not well defined it is obvi- 
ous that  the method of  solving through the quartic 
equation is the better since the angles between the best 
three traces may then be used to establish the quartic 
equation and the most  doubtful  last trace employed 
only for indicating which of  up to four possible solu- 
tions is the correct one; in this way errors are minim- 
ized. Otherwise the method of  solving through equa- 
tions (46) or (47) would be the neater and more expedi- 
tious. Where only three trace directions are found the 
method of  solving through the quartic equation has to 
be adopted,  yielding as many as four  possible pairs of  
mirror- image crystal orientations. It is clear that  the 
methods discussed readily lend themselves to being 
p rogrammed  on a computer.  

APPENDIX I 

In the situation as given in Fig. 1 and described in the 
text it is clear that  angles 0t, 02, and 03 cannot  all be 
120 ° at the same time; otherwise AP, BP, and CP 
would be coplanar.  Thus at least one of  these angles 
is 60 °. Without  loss of generality take 01 to be 60 ° and 
CP and BP to be the directions [110] and [101] respec- 
tively. A P  is a (110)  type direction m a k i n g 6 0 0 r  120 ° 
with CP and BP, i.e. with [110] and [101] and is there- 
fore representable by the direction [0j2j3] where j2,J3= 
+ 1. The following relations should hold:  

V½(0,A,A). ]/½(l, 1,0)=COS 02, 
i.e. 

and 

i.e. 

J2 = 2 cos 02 " 

I 0 ° " . 1/~(,J2,J3) ]/½(1,0, l) COS 03, 

J3 = 2 cos 03 • 

AP, BP, and CP are coplanar  if 

(O,j2,J3). (1,0,1)a(1, 1 , 0 ) = 0  
which gives 

i.e. 
J2 +Ja = 0 

C O S  0 2  q ' - C O S  0 3  = 0 . 

Thus AP, BP, and CP are coplanar  if one of  02 and 
03 is 60 ° and the other 120 °. Hence in Fig. 1 01, 02, 03 
are all 60 o or one of them 60 ° and the other two 120 °. 

APPENDIX II 

In Fig. 3 the direction OP makes angles of  0, ~u, and 
a with O W, OX and OZ respectively where O X Y Z  
constitute a set of rectangular coordinate axes and O W 
lies in the O X Y  plane at an angle c~ to OX. The unit 
vector for the direction O W is (cos e, sin ~, 0). Let 
that  for OP be (cos v/, p, cos a). Then 

(cos V, P, cos a ) .  (cos ~, sin ~, 0 ) =  cos 0 

x 

0 

Y 
Fig. 3. The direction OP relative to rectangular coordinate 

axes OX, O Y, and OZ and direction OW in the OXY plane. 

i.e. 
cos ~u cos ~ + p  sin ~ = cos 0 

giving 
pZ=  _c_°s2 O_ + c°sZ ~' cos! ~-_2 C_OS_ 0 cos_~u cos c~ 

sin E 

But because (cos ¢,  p, cos e) is a unit vector we also 
have 

p 2 = 1 - cos 2 ~ - cos z o-. 
Hence 

cos 2 0 + cos 2 q/cos 2 c~--2 cos 0 cos ~t cos 
..... 

sin 2 c~ 
-- l - cos 2 9 , -  cos 2 a .  

This gives 
cos-" 0 + cos 2 ~u-2  cos 0 cos ~u cos 

COS 2 O" = 1 -- 
sin 2 

I f  OP is limited to lying on the same side of  O X Y  as 
OZ then o- is always acute and is related to 0, 9,, and 
by 
cos 0-= ] / [ 1 - c ° s 2  0+c°s2  ~ t -  2 c°s 0 c°s ~ c°s ~] 

sin 2 ~ 
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